GONDON'S Model. where, P = Price of a Sharre. E = Eatining per share (EPS). b = Retention Matio i.e percontage of eatings netained. (1-b) = D/P Matio i.e, percentage of earnings distributed as dividend. Ke = Cost of equity Capital on the capitalisation Mate. br = 9 = Growth nate of newmon investment.

$$\frac{1}{K_e - g} = \frac{1}{K_e - br} \quad 1 \cdot g = br$$

Illustration 7.

The following information is collected from the annual reports of J Ltd.:

Profit before tax

Tax rate

Retention ratio

Numbers of outstanding shares

Equity capitalisation rate

Rate of return on investment

₹ 2.50 crore

40 per cent

50,00,000

12 per cent

15 per cent

What should be the market price per share according to Gordon's Model of dividend policy

[C.A. Inter May, 2015]

According to Gordon's Model, the Market Price (P) of a share, is given by,

$$P = \frac{E(1-b)}{K_e - br}$$

Where,

E = Earnings per share, (i.e., 60% of ₹ 2.50 crore/50,00,000 shares) ₹ 3

b = Retention ratio i.e., 40% or 0.40

 K_e = Cost of Capital or Equity Capitalisation rate i.e., 12% or 0.12

r = Rate of return on investment i.e., 15% or 0.15

Now, putting the values in the model, we get,

$$P = \frac{73(1-0.40)}{0.12-(0.40\times0.15)}$$

$$= \frac{180}{0.12 - 0.06}$$
$$= 30.$$

the following information relating to a company, determine the market price of a share using Gordon's Model :

nt assets	
No. of shares	₹ 10,00,000
Total earnings	and a
Cost of capital	50,000 ₹ 2,00,000
Pay-out ratio	· 2,00,000

Pay-out ratio 16% 40%

according to Gordon's Model, the Market Price of a share, P, is given by,

$$P = \frac{E(1-b)}{K_e - br}$$

where, P = Market Price of a share

E = Earnings per share

$$= \frac{\text{Total earnings}}{\text{No. of shares}}$$

$$=\frac{2,00,000}{50,000}$$

$$(1-b)$$
 = Pay-out ratio = 0.40

$$K_e$$
 = Cost of capital = 0.16

$$b$$
 = Retention ratio = $1 - 0.40 = 0.60$

r = Rate of return on investmentsand

$$= \frac{\text{Total earnings}}{\text{Total Investments}} \times 100$$

$$=\frac{₹2,00,000}{₹10.00,000}\times100$$

$$= 20\% = 0.20$$

Putting the values in the model, we get,

$$P = \frac{34 \times 0.40}{0.16 - (0.60 \times 0.20)} = 340.$$

Illustration 9.

A company's total investment in asset is ₹ 1,00,00,000. It has 1,00,000 shares of ₹ 100 each. Its exprant of return on investment is 30% and the cost of capital is 18%. The company has a policy retaining 25% of its profits. Determine the value of the firm using Gordon's Model.

[C.U. M.Com, 1991] [Almost similar to C.U. M.Com, 1991]

As per Gordon's Model, the Market Price of a share,

$$P = \frac{E(1-b)}{K_c - br}$$

where, P = Market price of a share.

E = Earnings per share.

$$= \frac{30\% \text{ of } ₹1,00,000,000}{1,00,000} = ₹30$$

b = Retention ratio or percentage of earnings retained.

= 25% or 0.25

 K_e = Capitalisation rate = 18% or 0.18

and r = Rate of return on investment.

= 30% = 0.30

Putting the values in the model, we get,

$$P = \frac{30(1 - 0.25)}{0.18 - (0.25 \times 0.30)}$$
$$= 3214.28571.$$

∴ Market price of a share, P = ₹ 214.28571.

Now, Value of the firm,

$$V = n \times P$$

where, n = Number of shares,

and P = Market price of a share,

∴
$$V = 1,00,000 \times ₹ 214.28571$$

= ₹ 2,14,28,571.

Illustration 10.

The following information is available in respect of the rate of return on investment (r), the capitalisate rate (K_c) and earnings per share (E) of ABC Ltd.

$$r = 12$$
 per cent, $E = ₹ 20$.

Determine the value of its shares, assuming the following:

awation			
Situation	D/P P		
<i>J.</i>	D/P Ratio (1 - b)		(A) (FOE)
(2)	0)	Rat	725
(a)	10	Retention	
(b)		Ratio (b)	K _e (%)
(c)	20	90	
(d)	30	80	20
(e)	40	70	19
40	50	60	18
(f)	60	l .	17
(g)	70	50	16
1.3	70	40	15
		30	13

Solution:

scording to Gordon's Model, the value of a share, P, is given by,

$$P = \frac{E(1-b)}{K_{\epsilon} - br}$$

where, P = Value of a share,

E = Earnings per share,

b =Retention ratio,

(1-b) = D/P ratio,

 K_e = Capitalisation rate,

r = Rate of return on investment.

The value of shares of ABC Ltd. for different D/P ratios and retention ratios are shown in the following table.

retention ratios are shown in the following table.				
Situation	D/P Ratio (1– <i>b</i>)	Retention Ratio (b)	K _e (%)	Value of Share
(a)	10	90	20	$P = \frac{20 \times 0.10}{0.20 - (0.90 \times 0.12)} = 21.74$
(b)	20	80	19	$P = \frac{₹20 \times 0.20}{0.19 - (0.80 \times 0.12)} = ₹42.55$
(c)	30	70	18	$P = \frac{20 \times 0.30}{0.18 - (0.70 \times 0.12)} = 62.50$
(d)	40	60	17	$P = \frac{20 \times 0.40}{0.17 - (0.60 \times 0.12)} = 81.63$
	50	50	16	$P = \frac{20 \times 0.50}{0.16 - (0.50 \times 0.12)} = 100.00$
(e)		40	15	$P = \frac{20 \times 0.60}{0.15 - (0.40 \times 0.12)} = 117.65$
(f)	60	40	14	$P = \frac{20 \times 0.70}{0.14 - (0.30 \times 0.12)} = 7.34.62$
(g)	70	30	14	1 0.14-(0.50% 2-)